Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Quantitative Profiling of Protein S-Glutathionylation Reveals Redox-Dependent Regulation of Macrophage Function during Nanoparticle-Induced Oxidative Stress.

Identifieur interne : 000431 ( Main/Exploration ); précédent : 000430; suivant : 000432

Quantitative Profiling of Protein S-Glutathionylation Reveals Redox-Dependent Regulation of Macrophage Function during Nanoparticle-Induced Oxidative Stress.

Auteurs : Jicheng Duan [États-Unis] ; Vamsi K. Kodali [États-Unis] ; Matthew J. Gaffrey [États-Unis] ; Jia Guo [États-Unis] ; Rosalie K. Chu [États-Unis] ; David G. Camp [États-Unis] ; Richard D. Smith [États-Unis] ; Brian D. Thrall [États-Unis] ; Wei-Jun Qian [États-Unis]

Source :

RBID : pubmed:26700264

Descripteurs français

English descriptors

Abstract

Engineered nanoparticles (ENPs) are increasingly utilized for commercial and medical applications; thus, understanding their potential adverse effects is an important societal issue. Herein, we investigated protein S-glutathionylation (SSG) as an underlying regulatory mechanism by which ENPs may alter macrophage innate immune functions, using a quantitative redox proteomics approach for site-specific measurement of SSG modifications. Three high-volume production ENPs (SiO2, Fe3O4, and CoO) were selected as representatives which induce low, moderate, and high propensity, respectively, to stimulate cellular reactive oxygen species (ROS) and disrupt macrophage function. The SSG modifications identified highlighted a broad set of redox sensitive proteins and specific Cys residues which correlated well with the overall level of cellular redox stress and impairment of macrophage phagocytic function (CoO > Fe3O4 ≫ SiO2). Moreover, our data revealed pathway-specific differences in susceptibility to SSG between ENPs which induce moderate versus high levels of ROS. Pathways regulating protein translation and protein stability indicative of ER stress responses and proteins involved in phagocytosis were among the most sensitive to SSG in response to ENPs that induce subcytoxic levels of redox stress. At higher levels of redox stress, the pattern of SSG modifications displayed reduced specificity and a broader set pathways involving classical stress responses and mitochondrial energetics (e.g., glycolysis) associated with apoptotic mechanisms. An important role for SSG in regulation of macrophage innate immune function was also confirmed by RNA silencing of glutaredoxin, a major enzyme which reverses SSG modifications. Our results provide unique insights into the protein signatures and pathways that serve as ROS sensors and may facilitate cellular adaption to ENPs, versus intracellular targets of ENP-induced oxidative stress that are linked to irreversible cell outcomes.

DOI: 10.1021/acsnano.5b05524
PubMed: 26700264
PubMed Central: PMC4762218


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Quantitative Profiling of Protein S-Glutathionylation Reveals Redox-Dependent Regulation of Macrophage Function during Nanoparticle-Induced Oxidative Stress.</title>
<author>
<name sortKey="Duan, Jicheng" sort="Duan, Jicheng" uniqKey="Duan J" first="Jicheng" last="Duan">Jicheng Duan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biological Sciences Division, §Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biological Sciences Division, §Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352</wicri:regionArea>
<wicri:noRegion>Washington 99352</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kodali, Vamsi K" sort="Kodali, Vamsi K" uniqKey="Kodali V" first="Vamsi K" last="Kodali">Vamsi K. Kodali</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biological Sciences Division, §Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biological Sciences Division, §Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352</wicri:regionArea>
<wicri:noRegion>Washington 99352</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gaffrey, Matthew J" sort="Gaffrey, Matthew J" uniqKey="Gaffrey M" first="Matthew J" last="Gaffrey">Matthew J. Gaffrey</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biological Sciences Division, §Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biological Sciences Division, §Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352</wicri:regionArea>
<wicri:noRegion>Washington 99352</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Guo, Jia" sort="Guo, Jia" uniqKey="Guo J" first="Jia" last="Guo">Jia Guo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biological Sciences Division, §Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biological Sciences Division, §Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352</wicri:regionArea>
<wicri:noRegion>Washington 99352</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chu, Rosalie K" sort="Chu, Rosalie K" uniqKey="Chu R" first="Rosalie K" last="Chu">Rosalie K. Chu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biological Sciences Division, §Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biological Sciences Division, §Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352</wicri:regionArea>
<wicri:noRegion>Washington 99352</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Camp, David G" sort="Camp, David G" uniqKey="Camp D" first="David G" last="Camp">David G. Camp</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biological Sciences Division, §Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biological Sciences Division, §Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352</wicri:regionArea>
<wicri:noRegion>Washington 99352</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Smith, Richard D" sort="Smith, Richard D" uniqKey="Smith R" first="Richard D" last="Smith">Richard D. Smith</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biological Sciences Division, §Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biological Sciences Division, §Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352</wicri:regionArea>
<wicri:noRegion>Washington 99352</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Thrall, Brian D" sort="Thrall, Brian D" uniqKey="Thrall B" first="Brian D" last="Thrall">Brian D. Thrall</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biological Sciences Division, §Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biological Sciences Division, §Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352</wicri:regionArea>
<wicri:noRegion>Washington 99352</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Qian, Wei Jun" sort="Qian, Wei Jun" uniqKey="Qian W" first="Wei-Jun" last="Qian">Wei-Jun Qian</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biological Sciences Division, §Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biological Sciences Division, §Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352</wicri:regionArea>
<wicri:noRegion>Washington 99352</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26700264</idno>
<idno type="pmid">26700264</idno>
<idno type="doi">10.1021/acsnano.5b05524</idno>
<idno type="pmc">PMC4762218</idno>
<idno type="wicri:Area/Main/Corpus">000471</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000471</idno>
<idno type="wicri:Area/Main/Curation">000471</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000471</idno>
<idno type="wicri:Area/Main/Exploration">000471</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Quantitative Profiling of Protein S-Glutathionylation Reveals Redox-Dependent Regulation of Macrophage Function during Nanoparticle-Induced Oxidative Stress.</title>
<author>
<name sortKey="Duan, Jicheng" sort="Duan, Jicheng" uniqKey="Duan J" first="Jicheng" last="Duan">Jicheng Duan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biological Sciences Division, §Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biological Sciences Division, §Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352</wicri:regionArea>
<wicri:noRegion>Washington 99352</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kodali, Vamsi K" sort="Kodali, Vamsi K" uniqKey="Kodali V" first="Vamsi K" last="Kodali">Vamsi K. Kodali</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biological Sciences Division, §Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biological Sciences Division, §Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352</wicri:regionArea>
<wicri:noRegion>Washington 99352</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gaffrey, Matthew J" sort="Gaffrey, Matthew J" uniqKey="Gaffrey M" first="Matthew J" last="Gaffrey">Matthew J. Gaffrey</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biological Sciences Division, §Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biological Sciences Division, §Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352</wicri:regionArea>
<wicri:noRegion>Washington 99352</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Guo, Jia" sort="Guo, Jia" uniqKey="Guo J" first="Jia" last="Guo">Jia Guo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biological Sciences Division, §Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biological Sciences Division, §Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352</wicri:regionArea>
<wicri:noRegion>Washington 99352</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chu, Rosalie K" sort="Chu, Rosalie K" uniqKey="Chu R" first="Rosalie K" last="Chu">Rosalie K. Chu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biological Sciences Division, §Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biological Sciences Division, §Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352</wicri:regionArea>
<wicri:noRegion>Washington 99352</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Camp, David G" sort="Camp, David G" uniqKey="Camp D" first="David G" last="Camp">David G. Camp</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biological Sciences Division, §Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biological Sciences Division, §Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352</wicri:regionArea>
<wicri:noRegion>Washington 99352</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Smith, Richard D" sort="Smith, Richard D" uniqKey="Smith R" first="Richard D" last="Smith">Richard D. Smith</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biological Sciences Division, §Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biological Sciences Division, §Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352</wicri:regionArea>
<wicri:noRegion>Washington 99352</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Thrall, Brian D" sort="Thrall, Brian D" uniqKey="Thrall B" first="Brian D" last="Thrall">Brian D. Thrall</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biological Sciences Division, §Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biological Sciences Division, §Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352</wicri:regionArea>
<wicri:noRegion>Washington 99352</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Qian, Wei Jun" sort="Qian, Wei Jun" uniqKey="Qian W" first="Wei-Jun" last="Qian">Wei-Jun Qian</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biological Sciences Division, §Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biological Sciences Division, §Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352</wicri:regionArea>
<wicri:noRegion>Washington 99352</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">ACS nano</title>
<idno type="eISSN">1936-086X</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Apoptosis (drug effects)</term>
<term>Cell Line (MeSH)</term>
<term>Cobalt (chemistry)</term>
<term>Cobalt (pharmacology)</term>
<term>Ferrosoferric Oxide (chemistry)</term>
<term>Ferrosoferric Oxide (pharmacology)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Glutaredoxins (antagonists & inhibitors)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Glutathione (metabolism)</term>
<term>Glycolysis (drug effects)</term>
<term>Macrophage Activation (drug effects)</term>
<term>Macrophages (cytology)</term>
<term>Macrophages (drug effects)</term>
<term>Macrophages (metabolism)</term>
<term>Mice (MeSH)</term>
<term>Nanoparticles (chemistry)</term>
<term>Nanoparticles (toxicity)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidative Stress (drug effects)</term>
<term>Oxides (chemistry)</term>
<term>Oxides (pharmacology)</term>
<term>Protein Biosynthesis (drug effects)</term>
<term>Protein Processing, Post-Translational (MeSH)</term>
<term>Proteins (genetics)</term>
<term>Proteins (metabolism)</term>
<term>RNA, Small Interfering (genetics)</term>
<term>RNA, Small Interfering (metabolism)</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Silicon Dioxide (chemistry)</term>
<term>Silicon Dioxide (pharmacology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Activation des macrophages (effets des médicaments et des substances chimiques)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Animaux (MeSH)</term>
<term>Apoptose (effets des médicaments et des substances chimiques)</term>
<term>Biosynthèse des protéines (effets des médicaments et des substances chimiques)</term>
<term>Cobalt (composition chimique)</term>
<term>Cobalt (pharmacologie)</term>
<term>Espèces réactives de l'oxygène (métabolisme)</term>
<term>Glutarédoxines (antagonistes et inhibiteurs)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Glutathion (métabolisme)</term>
<term>Glycolyse (effets des médicaments et des substances chimiques)</term>
<term>Lignée cellulaire (MeSH)</term>
<term>Macrophages (cytologie)</term>
<term>Macrophages (effets des médicaments et des substances chimiques)</term>
<term>Macrophages (métabolisme)</term>
<term>Maturation post-traductionnelle des protéines (MeSH)</term>
<term>Nanoparticules (composition chimique)</term>
<term>Nanoparticules (toxicité)</term>
<term>Oxyde ferrosoferrique (composition chimique)</term>
<term>Oxyde ferrosoferrique (pharmacologie)</term>
<term>Oxydes (composition chimique)</term>
<term>Oxydes (pharmacologie)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Petit ARN interférent (génétique)</term>
<term>Petit ARN interférent (métabolisme)</term>
<term>Protéines (génétique)</term>
<term>Protéines (métabolisme)</term>
<term>Silice (composition chimique)</term>
<term>Silice (pharmacologie)</term>
<term>Souris (MeSH)</term>
<term>Stress oxydatif (effets des médicaments et des substances chimiques)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Glutaredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cobalt</term>
<term>Ferrosoferric Oxide</term>
<term>Oxides</term>
<term>Silicon Dioxide</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Glutarédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Nanoparticles</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Cobalt</term>
<term>Nanoparticules</term>
<term>Oxyde ferrosoferrique</term>
<term>Oxydes</term>
<term>Silice</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Macrophages</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Macrophages</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Apoptosis</term>
<term>Glycolysis</term>
<term>Macrophage Activation</term>
<term>Macrophages</term>
<term>Oxidative Stress</term>
<term>Protein Biosynthesis</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Activation des macrophages</term>
<term>Apoptose</term>
<term>Biosynthèse des protéines</term>
<term>Glycolyse</term>
<term>Macrophages</term>
<term>Stress oxydatif</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glutaredoxins</term>
<term>Proteins</term>
<term>RNA, Small Interfering</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Petit ARN interférent</term>
<term>Protéines</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutaredoxins</term>
<term>Glutathione</term>
<term>Macrophages</term>
<term>Proteins</term>
<term>RNA, Small Interfering</term>
<term>Reactive Oxygen Species</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Espèces réactives de l'oxygène</term>
<term>Glutarédoxines</term>
<term>Glutathion</term>
<term>Macrophages</term>
<term>Petit ARN interférent</term>
<term>Protéines</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Cobalt</term>
<term>Oxyde ferrosoferrique</term>
<term>Oxydes</term>
<term>Silice</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Cobalt</term>
<term>Ferrosoferric Oxide</term>
<term>Oxides</term>
<term>Silicon Dioxide</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicity" xml:lang="en">
<term>Nanoparticles</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicité" xml:lang="fr">
<term>Nanoparticules</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Line</term>
<term>Gene Expression Profiling</term>
<term>Mice</term>
<term>Oxidation-Reduction</term>
<term>Protein Processing, Post-Translational</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Animaux</term>
<term>Lignée cellulaire</term>
<term>Maturation post-traductionnelle des protéines</term>
<term>Oxydoréduction</term>
<term>Souris</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Engineered nanoparticles (ENPs) are increasingly utilized for commercial and medical applications; thus, understanding their potential adverse effects is an important societal issue. Herein, we investigated protein S-glutathionylation (SSG) as an underlying regulatory mechanism by which ENPs may alter macrophage innate immune functions, using a quantitative redox proteomics approach for site-specific measurement of SSG modifications. Three high-volume production ENPs (SiO2, Fe3O4, and CoO) were selected as representatives which induce low, moderate, and high propensity, respectively, to stimulate cellular reactive oxygen species (ROS) and disrupt macrophage function. The SSG modifications identified highlighted a broad set of redox sensitive proteins and specific Cys residues which correlated well with the overall level of cellular redox stress and impairment of macrophage phagocytic function (CoO > Fe3O4 ≫ SiO2). Moreover, our data revealed pathway-specific differences in susceptibility to SSG between ENPs which induce moderate versus high levels of ROS. Pathways regulating protein translation and protein stability indicative of ER stress responses and proteins involved in phagocytosis were among the most sensitive to SSG in response to ENPs that induce subcytoxic levels of redox stress. At higher levels of redox stress, the pattern of SSG modifications displayed reduced specificity and a broader set pathways involving classical stress responses and mitochondrial energetics (e.g., glycolysis) associated with apoptotic mechanisms. An important role for SSG in regulation of macrophage innate immune function was also confirmed by RNA silencing of glutaredoxin, a major enzyme which reverses SSG modifications. Our results provide unique insights into the protein signatures and pathways that serve as ROS sensors and may facilitate cellular adaption to ENPs, versus intracellular targets of ENP-induced oxidative stress that are linked to irreversible cell outcomes. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26700264</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>10</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1936-086X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2016</Year>
<Month>Jan</Month>
<Day>26</Day>
</PubDate>
</JournalIssue>
<Title>ACS nano</Title>
<ISOAbbreviation>ACS Nano</ISOAbbreviation>
</Journal>
<ArticleTitle>Quantitative Profiling of Protein S-Glutathionylation Reveals Redox-Dependent Regulation of Macrophage Function during Nanoparticle-Induced Oxidative Stress.</ArticleTitle>
<Pagination>
<MedlinePgn>524-38</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/acsnano.5b05524</ELocationID>
<Abstract>
<AbstractText>Engineered nanoparticles (ENPs) are increasingly utilized for commercial and medical applications; thus, understanding their potential adverse effects is an important societal issue. Herein, we investigated protein S-glutathionylation (SSG) as an underlying regulatory mechanism by which ENPs may alter macrophage innate immune functions, using a quantitative redox proteomics approach for site-specific measurement of SSG modifications. Three high-volume production ENPs (SiO2, Fe3O4, and CoO) were selected as representatives which induce low, moderate, and high propensity, respectively, to stimulate cellular reactive oxygen species (ROS) and disrupt macrophage function. The SSG modifications identified highlighted a broad set of redox sensitive proteins and specific Cys residues which correlated well with the overall level of cellular redox stress and impairment of macrophage phagocytic function (CoO > Fe3O4 ≫ SiO2). Moreover, our data revealed pathway-specific differences in susceptibility to SSG between ENPs which induce moderate versus high levels of ROS. Pathways regulating protein translation and protein stability indicative of ER stress responses and proteins involved in phagocytosis were among the most sensitive to SSG in response to ENPs that induce subcytoxic levels of redox stress. At higher levels of redox stress, the pattern of SSG modifications displayed reduced specificity and a broader set pathways involving classical stress responses and mitochondrial energetics (e.g., glycolysis) associated with apoptotic mechanisms. An important role for SSG in regulation of macrophage innate immune function was also confirmed by RNA silencing of glutaredoxin, a major enzyme which reverses SSG modifications. Our results provide unique insights into the protein signatures and pathways that serve as ROS sensors and may facilitate cellular adaption to ENPs, versus intracellular targets of ENP-induced oxidative stress that are linked to irreversible cell outcomes. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Duan</LastName>
<ForeName>Jicheng</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Biological Sciences Division, §Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kodali</LastName>
<ForeName>Vamsi K</ForeName>
<Initials>VK</Initials>
<AffiliationInfo>
<Affiliation>Biological Sciences Division, §Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gaffrey</LastName>
<ForeName>Matthew J</ForeName>
<Initials>MJ</Initials>
<AffiliationInfo>
<Affiliation>Biological Sciences Division, §Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Guo</LastName>
<ForeName>Jia</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Biological Sciences Division, §Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chu</LastName>
<ForeName>Rosalie K</ForeName>
<Initials>RK</Initials>
<AffiliationInfo>
<Affiliation>Biological Sciences Division, §Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Camp</LastName>
<ForeName>David G</ForeName>
<Initials>DG</Initials>
<AffiliationInfo>
<Affiliation>Biological Sciences Division, §Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Smith</LastName>
<ForeName>Richard D</ForeName>
<Initials>RD</Initials>
<AffiliationInfo>
<Affiliation>Biological Sciences Division, §Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Thrall</LastName>
<ForeName>Brian D</ForeName>
<Initials>BD</Initials>
<AffiliationInfo>
<Affiliation>Biological Sciences Division, §Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Qian</LastName>
<ForeName>Wei-Jun</ForeName>
<Initials>WJ</Initials>
<AffiliationInfo>
<Affiliation>Biological Sciences Division, §Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P41 GM103493</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U24-CA-160019</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>DP2OD006668</GrantID>
<Acronym>OD</Acronym>
<Agency>NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U24 CA160019</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>UC4 DK104167</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>DP2 OD006668</GrantID>
<Acronym>OD</Acronym>
<Agency>NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U19 ES019544</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>12</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>ACS Nano</MedlineTA>
<NlmUniqueID>101313589</NlmUniqueID>
<ISSNLinking>1936-0851</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010087">Oxides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011506">Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D034741">RNA, Small Interfering</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3G0H8C9362</RegistryNumber>
<NameOfSubstance UI="D003035">Cobalt</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7631-86-9</RegistryNumber>
<NameOfSubstance UI="D012822">Silicon Dioxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>USK772NS56</RegistryNumber>
<NameOfSubstance UI="C060728">cobalt oxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>XM0M87F357</RegistryNumber>
<NameOfSubstance UI="D052203">Ferrosoferric Oxide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017209" MajorTopicYN="N">Apoptosis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003035" MajorTopicYN="N">Cobalt</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052203" MajorTopicYN="N">Ferrosoferric Oxide</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006019" MajorTopicYN="N">Glycolysis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008262" MajorTopicYN="N">Macrophage Activation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008264" MajorTopicYN="N">Macrophages</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053758" MajorTopicYN="N">Nanoparticles</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000633" MajorTopicYN="Y">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010087" MajorTopicYN="N">Oxides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014176" MajorTopicYN="N">Protein Biosynthesis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011499" MajorTopicYN="Y">Protein Processing, Post-Translational</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011506" MajorTopicYN="N">Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034741" MajorTopicYN="N">RNA, Small Interfering</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012822" MajorTopicYN="N">Silicon Dioxide</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">S-glutathionylation</Keyword>
<Keyword MajorTopicYN="N">immune functions</Keyword>
<Keyword MajorTopicYN="N">macrophage</Keyword>
<Keyword MajorTopicYN="N">nanotoxicology</Keyword>
<Keyword MajorTopicYN="N">oxidative stress</Keyword>
<Keyword MajorTopicYN="N">redox proteomics</Keyword>
<Keyword MajorTopicYN="N">resin-assisted enrichment</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>12</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>12</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>11</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26700264</ArticleId>
<ArticleId IdType="doi">10.1021/acsnano.5b05524</ArticleId>
<ArticleId IdType="pmc">PMC4762218</ArticleId>
<ArticleId IdType="mid">NIHMS758188</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biosens Bioelectron. 2013 May 15;43:88-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23287653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2004 Jun 1;1699(1-2):35-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15158710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioconjug Chem. 2012 May 16;23(5):1003-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22515422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Part Fibre Toxicol. 2012;9(1):6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22300531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Apr 5;277(14):12343-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11805088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Nano. 2011 Dec 27;5(12):9354-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22107733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2013 May 22;78(4):596-614</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23719160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2003 Mar;4(3):181-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12612637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 Sep 1;28(17):2293-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22782549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):13086-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16916935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nano Today. 2013 Jun;8(3):290-312</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23997809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Occup Med (Lond). 2006 Aug;56(5):300-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16868127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Nano. 2013 May 28;7(5):4289-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23614696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 1994 Jul 2;344(8914):41-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7912307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Aug 17;287(34):28738-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22761422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 1999;15:341-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10611965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Dec 15;17(12):1748-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22530666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Cases Miner Bone Metab. 2013 Jan;10(1):34-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23858309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Mol Med. 2001 Jul-Sep;5(3):221-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12067482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2013 Apr;57:68-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23277143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Dec 15;17(24):7151-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9857172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Treat Rev. 2004 Apr;30(2):193-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15023437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Part Fibre Toxicol. 2012;9:20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22697169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Rev Anticancer Ther. 2008 Nov;8(11):1751-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18983235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2011 Apr;44(4):491-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20539014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol In Vitro. 2011 Dec;25(8):1619-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21723938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(6):e38984</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22723915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2005 Jan;6(1):28-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15643448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Nano. 2009 Jul 28;3(7):1620-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21452863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Mar-Apr;7(3-4):348-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15706083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3505-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11904414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Immunol. 2015 Aug;27(4):267-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26454572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2012;14(1):434-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23263672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Nano. 2012 May 22;6(5):4349-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22502734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Nov;10(11):1941-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18774901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Cell Biol. 2013;2013:797914</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24348565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 2012 Mar;151(3):217-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22210905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Immunol. 2001 Dec;13(6):339-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11708889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2012 Dec 14;37(6):1037-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23159440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2000 Aug;267(16):4928-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10931175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 Jun 1;18(16):2029-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23244576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomed Res Int. 2013;2013:942916</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24027766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Part Fibre Toxicol. 2014;11:23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24885771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2002 Feb;4(1):85-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11970846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Small. 2013 May 27;9(9-10):1533-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23019129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Part Fibre Toxicol. 2009 Apr 27;6:13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19397808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2011 Sep 15;51(6):1249-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21762778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1993 Apr 6;32(13):3368-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8461300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014;5:5277</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25358478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W169-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17576678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Epidemiol. 2003 Feb 1;157(3):227-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12543622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2007 Mar;18(3):976-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17202407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Sci. 2009 Feb;107(2):553-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19073995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Physiol. 2012 Mar;227(3):1235-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21688267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cells. 2008 May 31;25(3):332-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18483468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1994 May;19(5):211-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7519373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2009 Jun;20(11):2650-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19339277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Part Fibre Toxicol. 2011;8:29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21943386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2013 May 5;368(1617):20110403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23530257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Drug Deliv. 2012;2012:167896</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23304518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Part Fibre Toxicol. 2014;11:20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24885440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Aug 15;30(16):2386-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24790154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomed Mater Res A. 2012 Aug;100(8):2147-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22615169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Crit Care Med. 2010 Jan 1;181(1):47-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19797763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2008 Jul 1;45(1):50-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18394432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2014 Dec;13(12):3270-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25118246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2013 May;15(5):481-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23624402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Part Fibre Toxicol. 2014;11:14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24669904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2011 Jun;3(6). pii: a004317. doi: 10.1101/cshperspect.a004317</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21441595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014;5:3514</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24675174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2014 Jan;9(1):64-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24336471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mutat Res. 2009 Jul 10;667(1-2):4-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18682255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2009 Feb;34(2):85-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19135374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Nano. 2013 Aug 27;7(8):6997-7010</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23808590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanotoxicology. 2014 Sep;8(6):663-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23837572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2003 Apr;28(4):443-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12654633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2001 Jun 1;30(11):1191-212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11368918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2010 Sep 1;24(17):1832-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20810645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2014 Feb;67:460-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24333276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 1996 Jul;15(1):9-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8679227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2008 Jul 1;45(1):1-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18423411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2009;4(1):44-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19131956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Sep 13;288(37):26497-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23861399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Appl Pharmacol. 2012 Jun 1;261(2):121-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22513272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acc Chem Res. 2013 Mar 19;46(3):733-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22720979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Cell Biol. 2012;2012:213492</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22262972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Nano. 2010 Jul 27;4(7):3661-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20593840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nano Lett. 2006 Aug;6(8):1794-807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16895376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Mar 15;16(6):496-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21929356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Jul-Aug;7(7-8):919-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15998247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanotoxicology. 2011 Sep;5(3):296-311</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20849212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Lung Cell Mol Physiol. 2013 Dec;305(11):L831-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24077948</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Duan, Jicheng" sort="Duan, Jicheng" uniqKey="Duan J" first="Jicheng" last="Duan">Jicheng Duan</name>
</noRegion>
<name sortKey="Camp, David G" sort="Camp, David G" uniqKey="Camp D" first="David G" last="Camp">David G. Camp</name>
<name sortKey="Chu, Rosalie K" sort="Chu, Rosalie K" uniqKey="Chu R" first="Rosalie K" last="Chu">Rosalie K. Chu</name>
<name sortKey="Gaffrey, Matthew J" sort="Gaffrey, Matthew J" uniqKey="Gaffrey M" first="Matthew J" last="Gaffrey">Matthew J. Gaffrey</name>
<name sortKey="Guo, Jia" sort="Guo, Jia" uniqKey="Guo J" first="Jia" last="Guo">Jia Guo</name>
<name sortKey="Kodali, Vamsi K" sort="Kodali, Vamsi K" uniqKey="Kodali V" first="Vamsi K" last="Kodali">Vamsi K. Kodali</name>
<name sortKey="Qian, Wei Jun" sort="Qian, Wei Jun" uniqKey="Qian W" first="Wei-Jun" last="Qian">Wei-Jun Qian</name>
<name sortKey="Smith, Richard D" sort="Smith, Richard D" uniqKey="Smith R" first="Richard D" last="Smith">Richard D. Smith</name>
<name sortKey="Thrall, Brian D" sort="Thrall, Brian D" uniqKey="Thrall B" first="Brian D" last="Thrall">Brian D. Thrall</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000431 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000431 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26700264
   |texte=   Quantitative Profiling of Protein S-Glutathionylation Reveals Redox-Dependent Regulation of Macrophage Function during Nanoparticle-Induced Oxidative Stress.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26700264" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020